

Joint Polar Satellite System (JPSS) Cross-Track Infrared Microwave Sounding Suite (CrIMSS) Environmental Data Record Validation Status

Nicholas R. Nalli,^{1,2} Christopher D. Barnet,¹ Murty Divakarla,^{1,2} Lihang Zhou,^{1,3} Degui Gu,⁴ Xu Liu,⁵ Susan Kizer,⁵ Xiaozhen Xiong,^{1,2} Guang Guo^{1,6}, Tony Reale,¹ Bill Blackwell,⁷ et al.

¹ NOAA/NESDIS Center for Satellite Applications and Research (STAR), Camp Springs, MD, USA
 ² I.M. Systems Group, Inc., Rockville, MD, USA
 ³ Algorithms and Data Products Program, NOAA/NESDIS/STAR, Silver Spring, MD, USA
 ⁴ Northrop Grumman Aerospace Systems (NGAS), Redondo Beach, CA, USA
 ⁵NASA Langley Research Center, Hampton, VA, USA
 ⁶Riverside Technology, Inc., Silver Spring, MD, USA
 ⁷MIT Lincoln Laboratory, Lexington, MA, USA

- Bomin Sun, Frank Tilley, Michael Pettey (NOAA/NESDIS/STAR NPROVS developers)
- M. D. Goldberg, A. Gambacorta, E. Maddy, (NOAA/NESDIS/STAR)
- D. Tobin, R. Knuteson, H. Revercomb (UW/CIMSS)
- L. Strow (UMBC)
- J. Susskind (NASA/GSFC)
- E. Joseph and V. Morris (Howard Univ./NCAS)

- CrIMSS (CrIS/ATMS) EDR Product Overview
 - AVTP, AVMP (KPPs), AVPP, O₃ (IP)
 - JPSS Specification Performance Requirements
- Cal/Val Program Status Highlights
 - Overview
 - Team Members
 - Phases
 - Pre-Launch Phase Efforts
 - EOC-ICV Phase Near-Term Efforts

CrIMSS EDR

PRODUCT OVERVIEW

Atmospheric Vertical Temperature, Moisture and Pressure Profile (AVTP, AVMP, AVPP) Environmental Data Records (EDRs)

Nalli.

- AVTP and AVMP EDRs
 - Used for initialization of NWP models, forecasting / nowcasting weather, severe weather, cloud info and winds, basic science research, etc.
 - Key Performance Parameter (KPPs) for lower troposphere
- AVPP EDR
 - Derived from AVTP and AVMP
- Non-precipitating scenes
- O₃ intermediate product (IP)
 - Necessary for optimal EDR retrieval
 - Trace gas retrievals from IR sounders are desirable for basic science (e.g., greenhouse gases)

CrIMSS AVMP EDR retrieved from SDR Proxy Data, 19-Oct-07

JPSS Specification Performance Requirements

Atmospheric Vertical Temperature Profile (AVTP) Measurement Uncertainty – Layer Average Temperature Error			
PARAMETER	THRESHOLD		
AVTP Clear, surface to 300 mb	1.6 K / 1-km layer		
AVTP Clear, 300 to 30 mb	1.5 K / 3-km layer		
AVTP Clear, 30 mb to 1 mb	1.5 K / 5-km layer		
AVTP Clear, 1 mb to 0.5 mb	3.5 K / 5-km layer		
AVTP Cloudy , surface to 700 mb	2.5 K / 1-km layer		
AVTP Cloudy, 700 mb to 300 mb	1.5 K / 1-km layer		
AVTP Cloudy, 300 mb to 30 mb	1.5 K / 3-km layer		
AVTP Cloudy, 30 mb to 1 mb	1.5 K / 5-km layer		
AVTP Cloudy, 1 mb to 0.5 mb	3.5 K/ 5-km layer		

Bold = KPP

Atmospheric Ver	rtical Mo	isture F	Profile ((AVMP))
Measurement Uncertainty	y – 2-km Lay	yer Averag	ge Mixing	Ratio % I	Error

PARAMETER	THRESHOLD
AVMP Clear, surface to 600 mb	Greater of 20% or 0.2 g/kg / 2-km layer
AVMP Clear, 600 to 300 mb	Greater of 35% or 0.1 g/kg / 2-km layer
AVMP Clear, 300 to 100 mb	Greater of 35% or 0.1 g/kg / 2-km layer
AVMP Cloudy, surface to 600 mb	Greater of 20% of 0.2 g/kg / 2-km layer
AVMP Cloudy, 600 mb to 400 mb	Greater of 40% or 0.1 g/kg / 2-km layer
AVMP Cloudy, 400 mb to 100 mb	Greater of 40% or 0.1 g/kg / 2-km layer

CrIMSS EDR

CAL/VAL PROGRAM STATUS HIGHLIGHTS

CrIMSS Cal/Val Overview

- NPP CrIMSS EDR Cal/Val Plan: Ensure the data products comply with the requirements of the sponsoring agencies and have met global performance specifications.
 - Incorporated the IPO and NGAS plans
- **Draws on validation experience** from **AIRS/AMSU** and **IASI/AMSU/MHS** systems.
 - **Use proven datasets** for global validation (ECMWF, NCEP/GFS, RAOBs, etc)
 - Leverage Team of Subject Matter Experts (SME) for heritage knowledge, experience
 - Leverage existing capabilities wherever possible
 - Assess against heritage sensors and algorithms
 - Hyperspectral AIRS and IASI processing and validation systems
 - NOAA Unique CrIS ATMS Processing Systems (NUCAPS)
 - ATOVS (HIRS/AMSU) legacy products to demonstrate the value of hyperspectral
 - » NOAA Products Validation System (NPROVS)
 - Intensive field campaign cal/val experience
 - Roll-up regional assessments to assess that EDRs have met global spec
 - Validation methods typically characterize the performance of the EDRs in various ensembles
 - Stratifying specs according to various bins
 - day/night and latitude bands (i.e., polar, midlatitude, tropical)
 - land/ocean/ regional, and (possibly) altitude and surface characteristics

Team Members – Roles & Responsibilities

Cal/Val	Name	Organization	Funding Agency	Task	
NOAA Team Members					
Lead	Chris Barnet	NOAA/NESDIS/STAR	NJO	Lead CrIMSS EDR Team	
AVTP/AVMP	Changyong Cao	NOAA/NESDIS/STAR	NJO	Coordination w/ GSICS	
AVTP/AVMP	Mitch Goldberg	NOAA/NESDIS/STAR	NJO & NOAA-PSDI	NGAS-code, NUCAPS	
AVTP/AVMP	Anthony Reale	NOAA/NESDIS/STAR	NJO	NPROVS	
AVTP/AVMP	Fuzhong Weng	NOAA/NESDIS/STAR	NOAA-PSDI	MiRS	
CrIS SDR	Yong Han	NOAA/NESDIS/STAR	OIN	Lead CrIS SDR	
ATMS SDR	Tsan Mo	NOAA/NESDIS/STAR	OIN	Lead ATMS SDR	
NOAA-External Team Members					
AVTP/AVMP	Bill Blackwell	MIT	NJO	Microwave products	
AVTP/AVMP	Allan Larar	NASA/LaRC	NJO	EDR Validation	
AVTP/AVMP	Xu Liu	NASA/LaRC	NJO	IASI proxy, EDR validation	
AVTP/AVMP	Hank Revercomb	SSEC	NJO	SDR, PEATE	
AVTP/AVMP	Dave Tobin	SSEC	NJO	ARM-RAOBS	
AVTP/AVMP	Larrabee Strow	UMBC	NJO	OSS validation	
AVTP/AVMP	Joel Susskind	NASA/GSFC	NJO	AIRS proxy	
CrIMSS SDR	Steven Beck	Aerospace Corp.	external	RAOB, LIDAR	
CrIMSS SDR	Steven English	UKMET	external	UKMET analysis	
CrIMSS SDR	William Bell	ECMWF	external	ECMWF analysis	
AVTP/AVMP	Steve Friedman	NASA/JPL	NASA	Sounder PEATE	
AVTP/AVMP CrIS SDR	Denise Hagan Degui Gu	NGAS	NG Prime	EDR Validation / SDR coordination 9	

- Pre-Launch
- Early Orbit Checkout (EOC)
 L + 90 days, as sensors are activated
- Intensive Cal/Val (ICV)
 - Stable SDR out to L + 24 months
 - Validation of EDRs against multiple correlative datasets
- Long-Term Monitoring (LTM)
 - From end of ICV (L + 24 months) to the end of operational lifetime
 - Characterization of all EDR products and long-term demonstration of performance

- Pre-launch
 - Global synthetic datasets
 - Tests algorithm for theoretical robustness self-consistent profiles are "controlled"
 - Simulated for a wide range of environmental scenes

Proxy datasets

- Data derived from existing satellite systems with similar specs (here AIRS/AMSU and IASI/AMSU)
- Support launch readiness (functionality of the code, developing methods of empirical bias correction) and porting of algorithms)
- AIRS (9 IR FOVs and 01:30 orbit); IASI (exact IR radiance spectral transform and MHS channels)

• Early Orbit Checkout

- Model comparisons
 - Sanity checks on "obs calc" using ECMWF and NCEP/GFS
- Simultaneous nadir overpass and double differencing
- Inter-compare with operational AIRS and/or IASI products
 - Useful to identify and mitigate issues with the operational EDRs
- PCA analysis of noise characteristics and instrument monitoring

• Operational RAOBs

- Useful for **global latitude representation** and **long-term characterization**. Statistical significance after a couple months' accumulation.

• Dedicated RAOBs

- Useful for **regional characterization**.
- Will take many months (years?) to accumulate for statistics.
- Funding for large number of RAOBs at ARM sites; ideally GCOS Reference Upper Air Network (GRUAN) volunteer coordination
- Intensive Field Campaigns (e.g., Tobin et al. 2006, Nalli et al. 2006, JGR, 111; Taylor et al. 2008, BAMS, 89; Blackwell et al. 2001, TGARS, 39)
 - Project-coordinated aircraft campaign using NAST-I, -M and/or S-HIS
 - Coordinate with other NASA missions (e.g., SEAC4RS)
 - Useful for regional characterization and SDR cal/val; state specification for "cal/val dissection"
 - Scientific campaigns of opportunity
 - Low cost, low risk; synergism; engages science community
 - NOAA Aerosols and Ocean Science Expeditions (AEROSE) (Nalli et al. 2011, BAMS, 92(6))

Pre-Launch Phase Efforts (1/3)

• Proxy Data Results

- CrIS/ATMS proxy SDR datasets
 - IASI/AMSU based
 - Focus Day 19-Oct-07 global granules
 - NOAA AEROSE 2010-11 campaigns
 - Include matched ECMWF/NCEP-GFS, IASI/AMSU, and proxy CrIS/ATMS SDRs
 - Available on NOAA/STAR FTP <u>ftp://ftp2.orbit.nesdis.noaa.gov/smcd/tking/CrIMSS_C</u> <u>ALVAL/</u>
 - AIRS/AMSU based
 - Raytheon Plantinum-72 (P72) data package
 - IDPS operational CrIMSS SDR/EDR
 - Available on GRAVITE FTP during JPSS Rehearsal

- CrIMSS EDR runs

- IDPS operational algorithm and environment; NGAS ADA environment; LaRC v1.5 algorithm, STAR offline environment; STAR NUCAPS algorithm
- CrIMSS EDR products retrieved from proxy data were seen to compare reasonably against ECMWF/RAOB matchups and current products
- Divakarla et al. (AMS, HISE, 2011); Gu et al. (AMS, 2011); Oral 3.8 (Divakarla et al.) this session

CrIS Radiance Bias Tuning

- The NOAA-unique IASI radiance bias-tuning procedures are being used for CrIS radiance bias tuning.
- Focus day (19 Oct 2007) ECMWF (original and "improved" for RTM) data are being used for CALC using the OSS model

RET vs. ECMWF (Focus-Day , 48, granules)

Focus Day Proxy Data

Prelaunch CrIS Tuning

Pre-Launch Phase Efforts (2/3)

- Profile Display (PDISP) and NPROVS Archive Summary (NARCS) analytical interface clients (JAVA)
- Inter-comparisons of all existing heritage satellite product systems, in addition to RAOB
- http://www.star.nesdis.noaa.gov/smcd/opdb/poes/NPROVS.php
- For more information, cf.
 - Oral 8.3 (Reale et al.) and 13.1 (Pettey et al.)
 - Poster #509 (*Sun et al.*) and #169 (*Reale et al.*)
- JPSS Cal/Val Rehearsal-2
 - Successfully held 22-26 August 2011
 - Generated detailed work plan on using data downloaded from GRAVITE and CLASS, including utility of Focus Day and other datasets
 - SDR and EDR proxy data sets were quality checked for the purpose of mitigation prior to launch

NOAA Products Validation System (NPROVS) Schematic

Performance for LaRC CrIMSS v1.5.04 (with bias correction)

Pre-Launch Phase Efforts (3/3)

NOAA PNE/AEROSE Campaigns

- Dedicated RAOB (*PTU*, z, wind, O_2) over the tropical North Atlantic Ocean
- Ocean region germane to CrIMSS mission
- AEROSE 2011 campaign successfully conducted in August
- AEROSE 2010, 2011 proxy datasets were developed by NOAA/STAR, MIT, and LaRC
 - Available on STAR FTP server
 - **Dust impact risk reduction**
 - Cf. Oral 3.8 (Divakarla et al.) this session
 - Cf. Poster Session 2 #500 (Nalli et al.)
- Next AEROSE September 2012
 - Campaign of opportunity to provide dedicated RAOB matchups over open ocean for ICV phase NPP cal/val
 - September is during the peak of the Atlantic hurricane season

- Early assessments will be obtained using matched ECMWF fields
- Global operational RAOB-NPP matchups will be accumulated for a statistical *in situ* sample
- Funding is in place for dedicated RAOBs from ARM sites
- Assuming no changes in ship schedule, 2012 NOAA AEROSE campaign to provide dedicated RAOB-NPP matchups over open ocean

Early Orbit Checkout Milestones			
Date	Milestone		
28 Oct 2011	NPP Launch		
08 Nov 2011	ATMS First Light		
17 Nov 2011	NPP reaches mission orbit		
21 Nov 2011	VIIRS First Light		
Dec 2011 – Jan 2012	ATMS Tuning		
18 Jan 2012	CrIS First Light		
Feb–Mar 2012	CrIS Tuning		
Mar–Apr 2012	Segue into ICV phase of Cal/Val Plan		
30 Jun 2012	Beta Stage Validation Report		

CrIMSS EDR Maturity					
Algorithm	Beta	Provisional	Val 1	Val 2	Val 3
AVTP AVMP AVPP	L + 6m	L + 12m	L + 18m	L + 24m	L + 36m

- The status of the NPP CrIMSS EDR Cal/Val Program for Sounding EDRs was overviewed in this presentation. The validation program is to ensure the data products comply with the requirements of the sponsoring agencies (i.e., meet spec).
- Pre-launch Cal/Val efforts have been successful for demonstrating launch readiness in exercising and performing initial tests of the IDPS EDR algorithm using proxy datasets, including focus days and intensive campaigns-of-opportunity.
- Early-Orbit Checkout Cal/Val efforts are currently underway in preparation for the Intensive Cal/Val (ICV) phase to follow.